<<<返回首页

SDC Stereo Double Compressor 黑山母带压缩器


支持系统:Windows.MAC

音源厂商:https://www.sknoteaudio.com/wp/2016/01/11/sdc-stereo-double-compressor/

独立安装程序 PC + MAC

文件大小:47MB


立体声双压缩器。每个通道上均配备:一个光学压缩器和一个 VCA(压控放大器)压缩器(分立式)。光学压缩器通过典型的电致发光面板音乐行为控制平均信号电平。分立式压缩器控制峰值,提供快速或完全控制。

三种光学模型,基于对多个 ELP(电致发光面板)和 LDR(光敏电阻)耦合器的测量。

三种变压器模型,从干净到非常脏。

中/侧编码和解码矩阵。完全控制立体声声像,两侧分别处理中和侧分量。

2019 版新增:采样对齐混音功能。

功能强大,适用于各种音源的混音,对母带处理极其实用高效。

提供 Win/Mac/VST/AU/AAX/32/64 位版本。

您可以点击此处以 Apple-silicon-native 的方式测试新的 AAX 版本。

(请确保您的工作站在插入第一个实例时处于在线状态。如果您没有许可证,您可以在演示模式下使用 14 天,但要求您的工作站在打开项目或每次插入第一个实例时都处于在线状态。)

多种光耦合器选项,从老款到新款。

光压缩器中最有趣、最独特的部分当然是光耦合器。

一般来说,当控制信号和受控增益之间的耦合是通过一个发光器件和一个光敏器件实现的时,压缩器就被称为"光压缩器"。

它可以通过许多不同的器件组合来实现。

灯泡、LED、面板……

光敏二极管、晶体管、电阻器……

最现代(也可能不那么有趣)的组合可能是 LED + 晶体管。

最经典、最受推崇的组合是电致发光面板 + 电阻器 (ELP + LDR)。

这听起来很有趣,因为每个设备都有其时域响应,这种响应非常复杂、缓慢,并且具有明显的频率依赖性。所有音乐元素,当它们恰好以正确的方式组合在一起时,都会产生效果。就像vari-MU一样,压缩器的大部分最终行为都集中在一个组件(电子管、光耦合器)上。ELP+LDR的组合是一个极端的例子。

这款压缩器使用了ELP+LDR。在分析这些设备的同时,我们开始测试几种方案(也是为了设计我们即将推出的超低价硬件光压缩器)。

ELP和LDR的反应都很奇特。正是这种组合导致了这种情况。控制面板的模式非常重要。你可以输入音频、控制信号、PWM等等。

此外,市面上有很多LDR可供选择,它们的特性各不相同。

因此,不同的组合可以组成不同的压缩器。我们在这个大型模型中包含了三个模型,分别对三种不同的组合进行建模。

老化效应被滤除了,因为它们不重要。这类光耦合器会因温度和老化而损坏。较低的灵敏度并不有趣。频率依赖性,包括频率相关的时序,才是音乐性的部分。

注意面板和电阻器都有各自的特点。

所以,有三种组合可供选择。第一种具有明显的频率-时间依赖性、频率-灵敏度依赖性(其静态部分通常由控制电路部分补偿)和较慢的响应。

第二种就像今天使用同类元件制造的装置,只是全新的。

第三种模拟了性能"更好"的设备(在最初的用途中,光发射器应该是即时的,而光敏电阻应该是快速且平坦的)。

这些光电压缩器不包含控制器,所以我认为各种变化很有用,也很有趣。

第一种模型在声源方面可能很有趣,而第二种模型可以提供更强的(从控制角度来看)变化。

第三种模型在编组和混音方面可能更有趣。

多种变压器选择。

当然,变压器过去的设计目标是尽可能降低特性和动态范围。如今,它们已成为一种色彩。

主要的限制(旧观点)和特性(现代观点)可能来自于磁芯的材料。磁芯填充了绕组之间的空间,影响了磁耦合的行为和强度。

这种耦合最有趣的部分是磁饱和。它既具有记忆性,又具有频率依赖性,这两者都是"音乐"的本质。

有些材料会缓慢而渐进地进入饱和状态,而有些材料则会快速而突然地进入饱和状态。类似于电平饱和、电子管与晶体管的比较,但比较到此为止。

变压器如今之所以如此引人注目,是因为它们能够赋予其他任何事物都无法赋予的独特色彩。

有源电路、变压器、扬声器(例如吉他放大器)是三种无法比较的色彩,因为它们以不同的方式发挥着截然不同的作用。

音频变压器具有与频率密切相关的饱和度,低频由于能量较高而饱和度更高,并且由于失真较大而控制整个信号,但饱和度会以一种奇怪的方式影响整体水平

Stereo double compressor. On each channel: an optical compressor followed by a VCA (Voltage Controlled Amplifier) compressor (Discrete). The first one controls the average signal level with the typical electro-luminescent panel musical behavior. The discrete one controls peaks, adding snap or full control.

Three optical models, based on measurements on several ELP (electroluminescent panels) and LDR (light dependent resistors) couples.

Three transformer models, from clean to quite dirty.

Mid/Side encoding and decoding matrix. Full control on stereo image with two sides processing Mid and Side components separately.

NEW version 2019: sample-aligned Mix feature.

Great and versatile for mixing on all kinds of sources, extremely useful and effective for mastering.

Available as Win/Mac/VST/AU/AAX/32/64 bit.

You can test the new AAX version as Apple-silicon-native HERE

(Ensure your workstation is online when you insert the very first instance. If you don't have a license, you can use it in demo mode for 14 days, requires your workstation to be online when you open the project or each time you insert a first instance).

Several opto-couplers options. From older to modern.

The most interesting and individual part of an opto compressor is of course the opto-coupler.

Generally speaking a compressor is "optical" whenever the coupling between control signal and controlled gain is achieved through one light emitting thing and one light-sensitive thing.

It can be done through a lot of different couples of devices.

Bulbs, LEDs, panels…

Light dependent diodes, transistors, resistors…

The most modern (and probably less interesting) couple is probably LED + transistor.

The classic, revered one is electroluminescent panel + resistor (ELP + LDR).

It sounds interesting because each device has a time domain response which is quite complex, slow and with a pronounced frequency dependency. All musical things, when they happen to be combined the right way. Like with vari-MU, the most of the final behaviour of the comp resides in a single component (a tube, an optocoupler). ELP+LDR is an extreme.

ELP+LDR is used for this comp. While analysing the units, we started testing several options (also because designing our new upcoming ultra-cheap hw opto compressor).

Both ELP and LDR have weird reactions. The couple makes it. The mode you control the panel is extremely important. You can feed audio into it, feed a control signal, PWM, etc.

Also there are lots of LDRs available, all with different character.

So, different combinations make different compressors. We included three models in this big one, modeling three different combinations.

Ageing effects where filtered out where they are not interesting. Such optocouplers are damaged by temperature and ageing. Lower sensitivity is not interesting. Frequency dependency, including frequency-dependent timing, are the musical part.

Note how panel and resistor both have attitude.

So, three combinations are available. The first one has pronounced frequency-time dependency, frequency-sensitivity dependency (whose static part is usually partially compensated for by control circuits) and slow reaction.

The second one is like an unit made today using the same kind of components, new.

The third one models something done from "better" performance devices (in the original purpose, light emitters should be immediate, LDRs should be fast and flat).

These opto compressors don't include controls so I thought variations are useful and interesting.

The first model probably is interesting on acoustic sources, with a bit stronger (on a control perspective) variation available with the second model.

Third one could be more interesting on groups, mixes.

Several transformer options.

Transformers used to be designed for the least possible character and dynamic range, of course. They are colours, today.

The main limit (old perspective) and character (modern perspective) come probably from the material the core is made of. The core fills the space between the windings, affecting the behaviour and the strength of the magnetic coupling.

The most interesting part of this coupling is magnetic saturation. It has both memory and frequency-dependency, both parts of what "musical" is.

Some materials go into saturation slowly and gradually, while others do it fast and abruptly. Similar to level saturation, tubes vs transistors, but the comparison ends here.

Transformers became so interesting today because they can add their kind of colour no other thing adds.

Active circuits, transformers, speakers (thinking of guitar amps) are three kinds of colours which are not comparable because they do competely different things in different ways.

An audio transformer has a strongly frequency-dependent saturation, with low freqs saturating more because of their higher energy and ruling over the full signal because they distort more but saturation affects the overall level, in a weird way: for exampl



点击获取下载链接